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Abstract: This paper discusses the dynamical behaviors of an SIRS epidemic model with saturation recovery
and two delays. The main results are given in terms of local stability and Hopf bifurcation. By choosing the
diverse delay as a bifurcation parameter, we show that the complex Hopf bifurcation phenomenon at the positive
equilibrium of the model can occur as the diverse delay crosses the corresponding critical value. Particularly, the
direction and stability of the local Hopf bifurcation are determined by using the normal form theory and center
manifold theorem. Finally, some numerical simulations supporting our theoretical results are presented.
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1 Introduction
Infectious diseases have ranked with wars and famine
as major challenges to hunman and society for cen-
turies [1]. Many epidemic dynamical models have
been proposed and used to study the dynamics of epi-
demics in order to understand the pathogenesis of dis-
eases and to control the diseases [2-8]. In [2], Xi-
ao and Ruan studied an epidemic model with non-
monotonic incidence rate and they found that either
the number of infective individuals tends to zero as
time evolves or the disease persists by investigating
the stability of the disease-free equilibrium and the
endemic equilibrium. In [5], Wang et al.proposed a
HIV model in order to understand HIV dynamics and
disease progression. In [7], Wan and Cui proposed the
following SIR model with saturation recovery:

dS(t)
dt = A− dS(t)− βS(t)I(t),

dI(t)
dt = βS(t)I(t)− (d+ v)I(t)− cI(t)

b+I(t) ,

dR(t)
dt = cI(t)

b+I(t) − dR(t),

(1)

where S(t), I(t) and R(t) denote the susceptible
number, the infected number and the recovered num-
ber of individuals at time t, respectively. A is the re-
cruitment rate of the susceptible population. d is the
natural death rate of the population and v is the death
rate due to the disease. β is the disease transmission
coefficient. c is the maximum of treatment per unit of
time and b measures how soon saturation occurs. τ is
the latent period of the epidemic. All the parameter-
s in system (1) are assumed to be positive. Wan and

Cui investigated the stability and bifurcations of the
endemic equilibria of system (1) in [7].

It has been recognized for a long time that time
delays can have a very complicated impact on the dy-
namics of a dynamical system and dynamics of a dy-
namical system with delay have been investigated by
many authors [9-15]. In [9], Zhuang and Zhu analyzed
the existence of Hopf bifurcation for an improved HIV
model with time delay and cure rate. In [12], Kar and
Ghorai studied the existence and properties of Hopf
bifurcation of delayed predator-prey model with har-
vesting. In [14], Bianca et al. investigated the exis-
tence of the Hopf bifurcation of an economic growth
model with two delays by regarding different combi-
nation of the two delays as a bifurcation parameter.
Further, they obtained the explicit formulas determin-
ing the stability, direction, and period of bifurcating
periodic solutions by using the normal form theory
and center manifold theorem. Motivated by the work
above and considering that the recovered individuals
may be infected again after a temporary immunity pe-
riod, we propose the following SIRS model with two
delays in this paper:



dS(t)
dt = A− dS(t)− βS(t− τ1)I(t− τ1)

+ηR(t− τ2),

dI(t)
dt = βS(t− τ1)I(t− τ1)− (d+ v)I(t)

− cI(t)
b+I(t) ,

dR(t)
dt = cI(t)

b+I(t) − dR(t)− ηR(t− τ2),

(2)
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where τ1 is the latent period of the epidemic and τ2
is the temporary immunity period after which a re-
covered individual may be infected again. η is the
state transition rate between the recovered class and
the susceptible class.

This paper is organized as follows. In Section 2,
existence of Hopf bifurcation of system (2) are ana-
lyzed by using characteristic root method. Direction
and stability of the Hopf bifurcation are determined
in Section 3 by using the normal form theory and the
center manifold theorem. In Section 4, computer sim-
ulations are carried out to illustrate the validity of the
main results. Some main conclusions are drawn in
Section 5.

2 Existence of Hopf bifurcation
It is not difficult to verify that ifR0 =

Abβ
bd(d+v)+cd > 1,

then system (2) admits a unique endemic equilibrium
E∗(S∗, I∗, R∗) , where

S∗ =
1

β
(d+ v +

c

b+ I∗
),

I∗ =
−B∗ +

√
B2

∗ − 4A∗C∗
2A∗

,

R∗ =
cI∗

(d+ η)(b+ I∗)
,

with

A∗ = β(d+ v)(d+ η),

C∗ = (d+ η)(bd2 + bdv −Abβ),

B∗ = (d+ η)(cβ + bβ(d+ v)

+d(d+ v)−Aβ)− cβη,

and R0 is the basic reproduction number.
It is easy to get the liberalization of system (2) at

the positive equilibrium of system

dS(t)
dt = a1S(t) + a5S(t− τ1) + a6I(t− τ1)

+a9R(t− τ2),

dI(t)
dt = a2I(t) + a7S(t− τ1) + a8I(t− τ1),

dR(t)
dt = a3I(t) + a4R(t) + a10R(t− τ2),

(3)
where

a1 = −d, a2 = −(d+ v)− bc

(b+ I∗)2
,

a3 =
bc

(b+ I∗)2
, a4 = −d,

a5 = −βI∗, a6 = −βS∗, a7 = βI∗,

a8 = βS∗, a9 = η, a10 = −η.

λ3 + A2λ
2 +A1λ+A0

+ (B2λ
2 +B1λ+B0)e

−λτ1

+ (C2λ
2 + C1λ+ C0)e

−λτ2

+ (D1λ+D0)e
−λ(τ1+τ2)

+ (E1λ+E0)e
−λ2τ1

+ F0e
−λ(2τ1+τ2) = 0, (4)

where

A0 = −a1a2a4, A1 = a1a2 + a1a4 + a2a4,

A2 = −(a1 + a2 + a4), B0 = −(a1a8 + a2a5)a4,

B1 = a1a8 + a2a5 + (a5 + a8)a4,

B2 = −(a5 + a8), C0 = −a1a2a10,
C1 = (a1 + a2)a10, C2 = −a10,
D0 = −(a3a7a9 + a1a8a10 + a2a5a10),

D1 = (a5 + a8)a10, E0 = (a6a7 − a5a8)a4,

E1 = a5a8 − a6a7, F0 = (a6a7 − a5a8)a10.

From the expressions of a5, a6, a7 and a8, we
know that a5a8 = a6a7. Thus, Eq.(4) becomes the
following form

λ3 + A2λ
2 +A1λ+A0

+ (B2λ
2 +B1λ+B0)e

−λτ1

+ (C2λ
2 + C1λ+ C0)e

−λτ2

+ (D1λ+D0)e
−λ(τ1+τ2). (5)

Case 1. τ1 = τ2 = 0.

When τ1 = τ2 = 0, Eq.(5) becomes

λ3 +A12λ
2 +A11λ+A10 = 0, (6)

where

A10 = A0 +B0 + C0 +D0,

A11 = A1 +B1 + C1 +D1,

A12 = A2 +B2 + C2.

If the condition (H11) A12 > 0, A12A11 > A10

holds, all the roots of Eq.(6) must have negative real
parts. Therefore, the positive equilibrium E∗ is lo-
cally asymptotically stable when τ1 = τ2 = 0 if the
condition (H11) holds.

Case2. τ1 > 0, τ2 = 0.

For τ1 > 0, τ2 = 0, Eq.(4) can be rewritten as
following

λ3 + A22λ
2 +A21λ+A20

+ (B22λ
2 +B21λ+B20)e

−λτ1 = 0, (7)
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where

A20 = A0 + C0, A21 = A1 + C1,

A22 = A2 + C2, B20 = B0 +D0,

B21 = B1 +D1, B22 = B2.

Let λ = iω1(ω1 > 0) be the root of Eq.(7). Then
we obtain{
M21(ω1) sin τ1ω1 +M22(ω1) cos τ1ω1 =M23(ω1),
M21(ω1) cos τ1ω1 −M22(ω1) sin τ1ω1 =M24(ω1),

where

M21(ω1) = B21ω1,

M22(ω1) = (B20 −B22ω
2
1),

M23(ω1) = A22ω
2
1 −A20,

M24(ω1) = ω3
1 −A21ω1.

Then, we can obtain

ω6
1 +m22ω

4
1 +m21ω

2
1 +m20 = 0, (8)

where

m20 = A2
20 −B2

20,

m21 = A2
21 −B2

21 − 2A20A22 + 2B20B22,

m22 = A2
22 −B2

22 − 2A21.

Let ω2
1 = v1, then Eq.(8) becomes

v31 +m22v
2
1 +m21v1 +m20 = 0. (9)

Define

f1(v1) = v31 +m22v
2
1 +m21v1 +m20.

Discussion about the roots of Eq.(9) is similar to that
in [16], so we have the following lemma.

Lemma 1 For the Eq.(9)
(i) If m20 < 0, then Eq.(9) has at least one posi-

tive root;
(ii) If m20 ≥ 0 and ∆1 = m2

22 − 3m21 ≤ 0, then
Eq.(9) has no positive roots;

(iii)If m20 ≥ 0 and ∆1 = m2
22 − 3m21 > 0,

then Eq.(9) has positive roots if and only if v∗1 =
−m22+

√
∆1

3 and f1(v∗1) ≤ 0.

In what follows, we assume that the coefficients
in f1(v1) satisfy the condition

(H21) (a): m20 < 0 or (b): m20 ≥ 0, ∆1 > 0,
v∗1 > 0 and f1(v∗1) ≤ 0.

If the condition (H21) holds, then Eq.(9) has at
least one positive root. Without loss of generality, we
assume that Eq.(9) has three positive roots which are

denoted as v11, v12 and v13, respectively. Then, Eq.(8)
has tree positive roots

√
ω1k, k = 1, 2, 3. And for

every fixed ω1k,

τ
(j)
1k =

1

ω1k
arccos

g21(ω1k)

h21(ω1k)
+

2jπ

ω1k
,

where

g21(ω1k) = (B21 −A22B22)ω
4
1k

+(A20B22 +A22B20 −A21B21)ω
2
1k

−A20B20,

h21(ω1k) = (B22ω
2
1k −B20)

2 +B2
21ω

2
1k.

k = 1, 2, 3.j = 0, 1, 2, · · · .

Define

τ10 = min{τ (0)1k }, ω10 = ω1k|τ1=τ10 , k = 1, 2, 3.

Let λ(τ1) = α(τ1) + iω(τ1) be a root of Eq.(7)
near τ1 = τ10 such that α(τ10) = 0, ω(τ10) = ω10.
Next, we verify the transversality condition. Substi-
tuting λ(τ1) into the left side of Eq.(7) and taking the
derivative with respect to τ1, we get[

dλ

dτ1

]−1

= − 3λ2 + 2A22λ+A21

λ(λ3 +A22λ2 +A21λ+A20)

+
2B22λ+B21

λ(B22λ2 +B21λ+B20)
− τ1
λ
.

Thus, we have

Re

[
dλ

dτ1

]−1

τ1=τ10

=
f ′1(v1∗)

B2
21ω

2
10 + (B22ω2

10 −B20)2
,

where v1∗ = ω2
10.

Thus, if (H22) f
′
1(v1∗) ̸= 0, thenRe[ dλdτ1 ]

−1
τ1=τ10 ≠

0. According to the Hopf bifurcation theorem in [17],
we have the following results.

Theorem 2 If the conditions H11, (H21) and (H22)
hold, the positive equilibrium E∗ of system (2) is
asymptotically stable for τ1 ∈ [0, τ10). System (2) un-
dergoes a Hopf bifurcation at τ1 = τ10, which means
that a branch of periodic solutions will bifurcate from
E∗ as τ1 passes through the critical value τ10.

The results in Theorem 2 show that the latent pe-
riod delay plays a complicated role in system (2) and
it is responsible for the stability switch of the system
when τ2 = 0.

Case 3. τ1 = 0, τ2 > 0.
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When τ1 = 0, τ2 > 0, Eq.(5) can be transformed
into the following form

λ3 + A32λ
2 +A31λ+A30

+ (B32λ
2 +B31λ+B30)e

−λτ2 = 0, (10)

where

A30 = A0 +B0, A31 = A1 +B1,

A32 = A2 +B2, B30 = C0 +D0,

B31 = C1 +D1, B32 = C2.

Let λ = iω2(ω2 > 0) be the root of Eq.(10).
Then, we get{

M31(ω2) cos τ2ω2 −M32(ω2) sin τ2ω2 =M33,

M31(ω2) sin τ2ω2 +M32(ω2) cos τ2ω2 =M34,

where

M31(ω2) = B31ω2,

M32(ω2) = B30 −B32ω
2
2,

M33(ω2) = ω3
2 −A31ω2,

M34(ω2) = A32ω
2
2 −A30.

Then, we can obtain

ω6
2 +m32ω

4
2 +m31ω

2
2 +m30 = 0, (11)

with

m30 = A2
30 −B2

30,

m31 = A2
31 −B2

31 − 2A30A32 + 2B30B32,

m32 = A2
32 −B2

32 − 2A31.

Let ω2
2 = v2, then Eq.(11) becomes

v32 +m32v
2
2 +m31v2 +m30 = 0. (12)

Define

f2(v2) = v32 +m32v
2
2 +m31v2 +m30.

Similar as in Case 2, we assume that the coef-
ficients in f2(v2) satisfy the condition (H31) (a′):
m30 < 0 or (b′): m30 ≥ 0, ∆2 > 0, v∗2 > 0
and f2(v

∗
2) ≤ 0, where ∆2 = m2

32 − 3m31 and
v∗2 = −m32+

√
∆2

3 .
If the condition (H31) holds, then Eq.(12) has

at least one positive root. Similar as in Case 2, we
assume that Eq.(12) has three positive roots which
are denoted as v21, v22 and v23, respectively. Then,
Eq.(11) has tree positive roots ω2k =

√
v2k, k =

1, 2, 3. For every fixed ω2k,

τ
(j)
2k =

1

ω2k
arccos

g31(ω2k)

h31(ω2k)
+

2jπ

ω2k
,

where

g31(ω2k) = (B31 −A32B32)ω
4
2k + (A30B32 +A32B30

−A31B31,

h31(ω2k) = (B32ω
2
2k −B30)

2 +B2
31ω

2
1k,

k = 1, 2, 3.j = 0, 1, 2, · · · .

Define

τ20 = min{τ (0)2k }, ω20 = ω2k|τ2=τ20 , k = 1, 2, 3.

Let λ(τ2) = α(τ2) + iω(τ2) be a root of Eq.(10)
near τ2 = τ20 such that α(τ20) = 0, ω(τ20) = ω20.
Similar as in Case 2, we can conclude that if (H32)
f ′2(v2∗) ̸= 0(v2∗ = ω2

20) holds, then Re[ dλdτ2 ]
−1
τ2=τ20 ≠

0. Thus, we have the following results.

Theorem 3 If the conditions (H11), (H31) and (H32)
hold, the positive equilibrium E∗ of system (2) is
asymptotically stable for τ2 ∈ [0, τ20). System (2) un-
dergoes a Hopf bifurcation at τ2 = τ20, which means
that a branch of periodic solutions will bifurcate from
E∗ as τ2 passes through the critical value τ20.

The results in Theorem 3 show that the time delay
due to the temporary immunity period can also play a
complicated role in system (2) and it is responsible for
the stability switch of the system when τ1 = 0.

Case 4. τ1 = τ2 = τ > 0.
When τ1 = τ2 = τ > 0, Eq.(5) becomes

λ3 + A42λ
2 +A41λ+A40

+ (B42λ
2 +B41λ+B40)e

−λτ

+ (C41λ+ C40)e
−2λτ = 0, (13)

where

A40 = A0, A41 = A1,

A42 = A2, B40 = B0 + C0,

B41 = B1 + C1, B42 = B2 + C2,

C41 = D1, C40 = D0.

Multiplying eλτ on both sides of Eq.(13), we get

B42λ
2 + B41λ+B40

+ (λ3 +A42λ
2 +A41λ+A40)e

λτ

+ (C41λ+ C40)e
−λτ = 0. (14)

Let λ = iω(ω > 0) be the root of Eq.(14). Then, we
can obtain{

M41(ω) cos τω −M42(ω) sin τω =M43(ω),

M44(ω) sin τω +M45(ω) cos τω =M46(ω),
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where

M41(ω) = A40 + C40 −A42ω
2,

M42(ω) = (A41ω − C41ω − ω3),

M43(ω) = B42ω
2 −B40,

M44(ω) = (A40 − C40 −A42ω
2),

M45(ω) = (A41ω + C41ω − ω3),

M46(ω) = −B41ω.

It follows that

sin τω =
p5ω

5 + p3ω
3 + p1ω

ω6 + q4ω4 + q2ω2 + q0
,

cos τω =
p4ω

4 + p2ω
2 + p0

ω6 + q4ω4 + q2ω2 + q0
,

where

p0 = (C40 −A40)B40,

p1 = (A41 + C41)B40 − (A40 + C40)B41,

p2 = (A40 − C40)B42 + (C41 −A41)B41

+A42B40,

p3 = A42B41 −B40 − (A41 + C41)B42,

p4 = B41 −A42B42, p5 = B42,

q0 = A2
40 − C2

40, q2 = A2
41 − C2

41 − 2A40A42,

q4 = A2
42 − 2A41.

By sin2 τω + cos2 τω = 1, we get

ω12 + m45ω
10 +m44ω

8 +m43ω
6

+ m42ω
4 +m41ω

2 +m40 = 0, (15)

where

m40 = q20 − p20,

m41 = 2q0q2 − 2p0p2 − p21,

m42 = q22 + 2q0q4 − p22 − 2p0p4 − 2p1p3,

m43 = 2q0 + 2q2q4 − 2p1p5 − 2p2p4 − p23,

m44 = q24 + 2q2 − p24 − 2p3p5,

m45 = 2q4 − p25.

Let ω2 = v3, then Eq.(15) becomes

v63 + m45v
5
3 +m44v

4
3 +m43v

3
3

+ m42v
2
3 +m41v3 +m40 = 0. (16)

In order to give the main results in this paper, we
make the following assumption.

(H41) Eq.(16) has at least one positive real root.
Suppose that the condition (H41) holds. Without

loss of generality, we assume that Eq.(16) has six pos-
itive real roots, which are denoted as v31, v32, · · · , v36,

respectively. Then Eq.(15) has six positive real roots
ωk =

√
v3k, k = 1, 2, · · · , 6. For every fixed ωk,

τ
(j)
k =

1

ωk
arccos

p4ω
4
k + p2ω

2
k + p0

ω6
k + q4ω4

k + q2ω2
k + q0

+
2jπ

ωk
,

with k = 1, 2, · · · , 6.j = 0, 1, 2, · · · .
Define

τ0 = min{τ (0)k }, ω0 = ωk|τ=τ0 , k = 1, 2, · · · , 6.

Let λ(τ) = α(τ) + iω(τ) be a root of Eq.(14)
near τ = τ0 such that α(τ0) = 0, ω(τ0) = ω0. Substi-
tuting λ(τ) into the left side of Eq.(14) and taking the
derivative with respect to τ , we get[

dλ

dτ

]−1

=
p41(λ)

q41(λ)
− τ

λ
,

with

p41(λ) = 2B42λ+B41

+(3λ2 + 2A42λ+A41)e
λτ + C41e

−λτ ,

q41(λ) = (C41λ
2 + C40λ)e

−λτ

−(λ4 +A42λ
3 +A41λ

2 +A40λ)e
λτ .

Thus, we have

Re

[
dλ

dτ

]−1

τ=τ0

=
P4RQ4R + P4IQ4I

Q2
4R +Q2

4I

,

where

P4R = (A41 + C41 − 3ω2
0) cos τ0ω0

−2A42ω0 sin τ0ω0 +B41,

P4I = (A41 − C41 − 3ω2
0) sin τ0ω0

+2A42ω0 cos τ0ω02 +B42ω0,

Q4R = (A41ω2
0 − C41ω

2
0 − ω4

0) cos τ0ω0

−(A42ω
3
0 −A40ω0 − C40ω0) sin τ0ω0,

Q4I = (A41ω
2
0 + C41ω

2
0 − ω4

0) sin τ0ω0

+(A42ω
3
0 −A40ω0 + C40ω0) cos τ0ω0.

Obviously, if (H42) P4RQ4R+P4IQ4I ̸= 0, then
Re[dλdτ ]

−1
τ=τ0 ̸= 0. Thus, we have the following results.

Theorem 4 If the conditions (H11), (H41) and (H42)
hold, the positive equilibrium E∗ of system (2) is
asymptotically stable for τ ∈ [0, τ0). System (2) un-
dergoes a Hopf bifurcation at τ = τ0, which means
that a branch of periodic solutions will bifurcate from
E∗ as τ passes through the critical value τ0.

WSEAS TRANSACTIONS on MATHEMATICS Juan Liu, Changjin Xu

E-ISSN: 2224-2880 304 Volume 15, 2016



Theorem 4 shows that the time delay τ is vital
to the solutions of system (2) and it can establish the
existence of bifurcating periodic solutions.

Case 5. τ1 > 0, τ2 > 0 and τ1 ∈ (0, τ10).
We consider Eq.(5) with τ1 in its stable inter-

val and τ2 is considered as a parameter. Let λ =
iω2∗(ω2∗ > 0) be the root of Eq.(5). Then we have

M51(ω2∗) sin τ2ω2∗ +M52(ω2∗) cos τ2ω2∗

=M53(ω2∗),

M51(ω2∗) cos τ2ω2∗ −M52(ω2∗) sin τ2ω2∗

=M54(ω2∗),

where

M51(ω2∗) = D1ω2∗ cos τ1ω2∗

−D0 sin τ1ω2∗ + C1ω2∗,

M52(ω2∗) = D1ω2∗ sin τ1ω2∗

+D0 cos τ1ω2∗ + C0 − C2ω
2
2∗,

M53(ω2∗) = A2ω
2
2∗ −A0 −B1ω2∗ sin τ1ω1∗

−(B0 −B2ω
2
2∗) cos τ1ω2∗,

M54(ω2∗) = ω3
2∗ −A1ω2∗ −B1ω2∗ cos τ1ω2∗

+(B0 −B2ω
2
2∗) sin τ1ω2∗.

Then, we have

ω6
2∗ + g14ω

4
2∗ + g12ω

2
2∗ + g10

+ 2(g24ω
4
2∗

+ g22ω
2
2∗ + g20) cos τ1ω2∗

− 2(g25ω
5
2∗

+ g23ω
3
2∗ + g21ω2∗) sin τ1ω2∗. (17)

where

g10 = A2
0 +B2

0 − C2
0 −D2

0,

g12 = A2
1 +B2

1 − C2
1 −D2

1

−2A0A2 − 2B0B2 + 2C0C2,

g14 = A2
2 +B2

2 − C2
2 − 2A1,

g20 = A0B0 − C0D0,

g21 = A1B0 + C0D1 −A0B1 − C1D0,

g22 = A1B1 −A0B2 −A2B0 − C1D1

+C2D0,

g23 = A2B1 −A1B2 − C2D1 −B0,

g24 = A2B2 −B1, g25 = B2.

Next, we suppose that (H51) Eq.(17) has at least
finite positive root. We denote the positive roots of
Eq.(17) as ω21∗, ω22∗, · · ·, ω2k∗. For every ω2i∗, i =
1, 2, · · · , k,

τ
(j)
2i∗ =

1

ω2i∗
arccos

g51(ω2i∗)

g52(ω2i∗)
+

2jπ

ω2i∗
,

with

g51(ω2i∗) = M51(ω2i∗)×M54(ω2i∗)

+M52(ω2i∗)×M53(ω2i∗),

g52(ω2i∗) = M2
51(ω2i∗) +M2

52(ω2i∗).

Define

τ∗2 = min{τ (0)2i∗}, ω
∗
2 = ω2i∗|τ2=τ∗2

, i = 1, 2, · · · , k.

Let λ(τ2) = α(τ2) + iω(τ2) be a root of Eq.(5)
near τ2 = τ∗2 such that α(τ∗2 ) = 0, ω(τ∗2 ) = ω∗

2 . Sub-
stituting λ(τ2) into the left side of Eq.(5) and taking
the derivative with respect to τ2, we get[

dλ

dτ2

]−1

=
p51(λ)

q51(λ)
− τ1
λ
,

where

p51(λ) = 3λ2 + 2A2λ+A1

−(τ1B2λ
2 − (2B2 − τ1B1)λ

+τ1B0 −B1)e
−λτ1

+(2C2λ+ C1)e
−λτ2

+(D1 − τ1D1λ− τ1D0)e
−λ(τ1+τ2),

q51(λ) = (C2λ
3 + C1λ

2 + C0λ)e
−λτ1

+(D1λ
2 +D0λ)e

−λ(τ1+τ2).

Therefore,

Re

[
dλ

dτ2

]−1

τ2=τ∗2

=
P5RQ5R + P5IQ5I

Q2
5R +Q2

5I

,

where

P5R = (2C2ω
∗
2 − (D1 − τ1D0) sin τ1ω

∗
2

−τ1D1ω
∗
2 cos τ1ω

∗
2) sin τ

∗
2ω

∗
2

+(C1 + (D1 − τ1D0) cos τ1ω
∗
2

−τ1D1ω
∗
2 sin τ1ω

∗
2) cos τ

∗
2ω

∗
2,

+A1 − 3(ω∗
2)

2 + (2B2 − τ1B1)ω
∗
1 sin τ1ω

∗
2

+(τ1B2(ω
∗
1)

2 +B1 − τ1B0) cos τ1ω
∗
2

P5I = (2C2ω
∗
2 − (D1 − τ1D0) sin τ1ω

∗
2

−τ1D1ω
∗
2 cos τ1ω

∗
2) cos τ

∗
2ω

∗
2

−(C1 + (D1 − τ1D0) cos τ1ω
∗
2

−τ1D1ω
∗
2 sin τ1ω

∗
2) sin τ

∗
2ω

∗
2,

+2A2ω
∗
2 + (2B2 − τ1B1) cos τ1ω

∗
2

−(τ1B2(ω
∗
2)

2 +B1 − τ1B0) sin τ1ω
∗
2,

Q5R = (C0ω
∗
2 − C2(ω

∗
2)

3 +D1(ω
∗
1)

2 sin τ1ω
∗
2

+D0ω
∗
2 cos τ1ω

∗
2) sin τ

∗
2ω

∗
2

−(C1(ω
∗
2)

2 +D1(ω
∗
2)

2 cos τ1ω
∗
2
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−D0ω
∗
2 sin τ1ω

∗
2) cos τ

∗
2ω

∗
2,

Q5I = (C0ω
∗
2 − C2(ω

∗
2)

3 +D1(ω
∗
1)

2 sin τ1ω
∗
2

+D0ω
∗
2 cos τ1ω

∗
2) cos τ

∗
2ω

∗
2

−(C1(ω
∗
2)

2 +D1(ω
∗
2)

2 cos τ1ω
∗
2

−D0ω
∗
2 sin τ1ω

∗
2) sin τ

∗
2ω

∗
2.

Thus, if (H52) P5RQ5R+P5IQ5I ≠ 0 holds, then
Re[ dλdτ2 ]

−1
τ2=τ∗2

̸= 0. Therefore, we have the following
results.

Theorem 5 If the conditions (H11), (H51) and (H52)
hold and τ1 ∈ (0, τ10), the positive equilibrium E∗ of
system (2) is asymptotically stable for τ2 ∈ [0, τ∗2 ).
System (2) undergoes a Hopf bifurcation at τ2 = τ∗2 ,
which means that a branch of periodic solutions will
bifurcate from E∗ as τ2 passes through the critical
value τ∗2 .

The results in Theorem 5 can establish the ex-
istence of bifurcating periodic solutions when τ1 >
0, τ2 > 0 and τ1 ∈ (0, τ10). Next, we determine the
direction of the Hopf bifurcation and stability of peri-
odic solutions in this case by following the algorithm
in [17].

3 Direction and stability of the Hopf
bifurcation

In this section, we investigate the direction of Hopf bi-
furcation and the stability of bifurcating periodic solu-
tions of system (2) with respect to τ2 for τ1 ∈ (0, τ10)
by using the normal form method and center manifold
theorem introduced by Hassard et al [17]. It is consid-
ered that system (2) undergoes a Hopf bifurcation at
τ2 = τ∗2 , τ1 ∈ (0, τ10). Without loss of generality, we
assume that τ∗2 > τ∗1 , where τ∗1 ∈ (0, τ10).

Let τ2 = τ∗2 + µ, µ ∈ R, then µ = 0 is
the Hopf bifurcation value of system (2). Rescaling
the time delay t → (t/τ2), then system (2) can be
transformed into a functional differential equation in
C = C([−1, 0], R3) as:

u̇(t) = Lµut + F (µ, ut) (18)

where u(t) = (u1(t), u2(t), u3(t))
T ∈ C =

C([−1, 0], R3) and Lµ : C → R3, F : R × C → R3

are given, respectively, by

Lµϕ = (τ∗2 +µ)(M1ϕ(0)+M2ϕ(−
τ∗1
τ∗2

)+M3ϕ(−1)),

F (µ, ϕ) = (τ∗2 + µ)(F1, F2, F3)
T ,

where ϕ(θ) = (ϕ1(θ), ϕ2(θ), ϕ3(θ))
T ∈ C,

M1 =

 a1 0 0
0 a2 0
0 a3 a4

 ,

M2 =

 a5 a6 0
a7 a8 0
0 0 0

 ,

M3 =

 0 0 a9
0 0 0
0 0 a10

 ,

F1 = a21ϕ1(−
τ∗1
τ∗2

)ϕ2(−
τ∗1
τ∗2

),

F2 = b21ϕ1(−
τ∗1
τ∗2

)ϕ2(−
τ∗1
τ∗2

) + b22ϕ
2
2(0)

+b23ϕ
3
2(0) + · · · ,

F3 = c21ϕ
2
2(0) + c22ϕ

3
2(0) + · · · ,

with

a21 = −β, b21 = β,

b22 =
bc

(b+ I∗)3
, b23 = − bc

(b+ I∗)4
,

c21 = − bc

(b+ I∗)3
, c22 =

bc

(b+ I∗)4
.

By the Riesz representation theorem, there exists
a 3 × 3 matrix function η(θ, µ), θ ∈ [−1, 0] whose
components are of bounded variation, such that

Lµϕ =

∫ 0

−1
dη(θ, µ)ϕ(θ), ϕ ∈ C([−1, 0], R3).

In fact, we choose

η(θ, µ) =



(τ∗2 + µ)(M1 +M2 +M3), θ = 0,

(τ∗2 + µ)(M2 +M3), θ ∈ [− τ∗1
τ∗2
, 0),

(τ∗2 + µ)M3, θ ∈ (−1,− τ∗1
τ∗2
),

0, θ = −1.

For ϕ ∈ C([−1, 0], R3), we define

A(µ)ϕ =


dϕ(θ)
dθ , −1 ≤ θ < 0,∫ 0
−1 dη(θ, µ)ϕ(θ), θ = 0,

and

R(µ)ϕ =

{
0, −1 ≤ θ < 0,

F (µ, ϕ), θ = 0.
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Then system (18) can be transformed into the follow-
ing operator equation

u̇(t) = A(µ)ut +R(µ)ut. (19)

The adjoint operator A∗ of A is defined by

A∗(φ) =

 −dφ(s)
ds , 0 < s ≤ 1,∫ 0

−1 dη
T (s, 0)φ(−s), s = 0,

associated with a bilinear form

⟨φ(s), ϕ(θ)⟩ = φ̄(0)ϕ(0)

−
∫ 0

θ=−1

∫ θ

ξ=0
φ̄(ξ − θ)dη(θ)ϕ(ξ)dξ,

(20)

where η(θ) = η(θ, 0).
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Figure 1: E∗ is locally asymptotically stable for τ1 =
3.525 < τ10 = 3.6108.
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Figure 2: E∗ is unstable for τ1 = 3.715 > τ10 =
3.6108.

From the analysis above, we can conclude
that ±iτ∗2ω∗

2 are eigenvalues of A(0) and A∗(0).
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Figure 3: E∗ is locally asymptotically stable for τ2 =
3.05 < τ20 = 3.1676.
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Figure 4: E∗ is unstable for τ2 = 3.225 > τ20 =
3.1676.
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Figure 5: E∗ is locally asymptotically stable for τ =
2.74 < τ0 = 3.0107.
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Figure 6: E∗ is unstable for τ = 3.15 > τ0 = 3.0107.
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Figure 7: E∗ is locally asymptotically stable for τ2 =
2.97 < τ∗2 = 3.0724 and τ1 = 2.05.
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Figure 8: E∗ is unstable for τ2 = 3.146 > τ∗2 =
3.0724 and τ1 = 2.05.

Let ρ(θ) = (1, ρ2, ρ3)
T eiτ

∗
2ω

∗
2θ be the eigenvec-

tor of A(0) corresponding to +iτ∗2ω
∗
2 and ρ∗(s) =

V (1, ρ∗2, ρ
∗
3)

T eiτ
∗
2 ω

∗
2s be the eigenvector of A∗ corre-

sponding to −iτ∗2ω∗
2 . By some complex computation-

s, we can obtain

ρ2 =
a7

iω∗
2 − a2 − a8e

−iω∗
2τ

∗
1
,

ρ3 =
a1 + a5e

−iω∗
2τ

∗
2 + a6ρ2e

−iω∗
2τ

∗
1

iω∗
2 − a9e

−iω∗
2τ

∗
2

,

ρ∗2 = − iω
∗
2 + a1 + a5e

iω∗
2τ

∗
1

a7e
iω∗

2τ
∗
1

,

ρ∗3 = − a9e
iω∗

2τ
∗
2

iω∗
2 + a4 + a10e

iω∗
2τ

∗
2
.

From Eq.(20), we obtain

V̄ = [1 + ρ2ρ̄
∗
2 + ρ3ρ̄

∗
3

+τ∗1 (a5 + a6ρ2 + ρ̄∗2(a7 + a8ρ2))e
−iω∗

2τ
∗
1

+τ∗2 ρ3(a9 + a10ρ̄
∗
3)e

−iτ∗2 ω
∗
2 ]−1

such that ⟨ρ∗, ρ⟩ = 1, ⟨ρ∗, ρ̄⟩ = 0.
Following the algorithm given in [17] and using

the similar computation process in [18], we can get
the coefficients used to determine the qualities of the
Hopf bifurcation:

g20 = 2τ∗2 V̄ [a21ρ
(1)(−τ

∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
)

+ρ̄∗2(b21ρ
(1)(−τ

∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
)

+2b22(ρ
(2)(0))2) + 2c21ρ̄

∗
3(ρ

(2)(0))2],

g11 = τ∗2 V̄ [a21(ρ
(1)(−τ

∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+ρ̄(1)(−τ
∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
))

+ρ̄∗2(b21(ρ
(1)(−τ

∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+ρ̄(1)(−τ
∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
))

+2b22ρ
(2)(0)ρ̄(2)(0))

+2c21ρ̄
∗
3ρ

(2)(0)ρ̄(2)(0)],

g02 = 2τ∗2 V̄ [a21ρ̄
(1)(−τ

∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+ρ̄∗2(b21ρ̄
(1)(−τ

∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+2b22(ρ̄
(2)(0))2) + 2c21ρ̄

∗
3(ρ

(2)(0))2],

g21 = 2τ∗2 V̄ [a21(W
(1)
11 (−τ

∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
)
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+
1

2
W

(1)
20 (−τ

∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+W
(2)
11 (−τ

∗
1

τ∗2
)ρ(1)(−τ

∗
1

τ∗2
)

+
1

2
W

(2)
20 (−τ

∗
1

τ∗2
)ρ̄(1)(−τ

∗
1

τ∗2
))

+ρ̄∗2(b21(W
(1)
11 (−τ

∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
)

+
1

2
W

(1)
20 (−τ

∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+W
(2)
11 (−τ

∗
1

τ∗2
)ρ(1)(−τ

∗
1

τ∗2
)

+
1

2
W

(2)
20 (−τ

∗
1

τ∗2
)ρ̄(1)(−τ

∗
1

τ∗2
))

+b22(2W
(2)
11 (0)ρ(2)(0)

+W
(2)
20 (0)ρ̄(2)(0)) + 3b23(ρ

(2)(0))2ρ̄(2)(0))

+ρ̄∗3(c21(2W
(2)
11 (0)ρ(2)(0)

+W
(2)
20 (0)ρ̄(2)(0)) + 3c22(ρ

(2)(0))2ρ̄(2)(0))],

with

W20(θ) =
ig20ρ(0)

τ∗2ω
∗
2

eiτ
∗
2 ω

∗
2θ +

iḡ02ρ̄(0)

3τ∗2ω
∗
2

e−iτ∗2 ω
∗
2θ

+E20e
2iτ∗2 ω

∗
2θ,

W11(θ) = − ig11ρ(0)
τ∗2ω

∗
2

eiτ
∗
2ω

∗
2θ +

iḡ11ρ̄(0)

τ∗2ω
∗
2

e−iτ∗2ω
∗
2θ

+E11,

where E20 and E11 can be computed by the following
equations, respectively a′11 a′12 a′13

a′21 a′22 0
0 −a3 a′33

E20 = 2

 E
(1)
20

E
(2)
20

0


 α′

11 a6 a9
a7 α′

22 0
0 a3 α′

33

E11 = −

 E
(1)
11

E
(2)
11

0


with

a′11 = 2iω∗
2 − a1 − a5e

−2iτ∗1 ω
∗
2 ,

a′12 = −a6e−2iτ∗1 ω
∗
2 ,

a′13 = −a9e−2iτ∗2 ω
∗
2 ,

a′21 = −a7e−2iτ∗1 ω
∗
2 ,

a′22 = 2iω∗
2 − a2 − a8e

−2iτ∗1 ω
∗
2 ,

a′33 = 2iω∗
2 − a4 − a10e

−2iτ∗1 ω
∗
2 ,

α′
11 = a1 + a5,

α′
22 = a2 + a8,

α′
33 = a4 + a10,

and with

E
(1)
20 = a21ρ

(1)(−τ
∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
),

E
(2)
20 = b21ρ

(1)(−τ
∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
)

+2b22(ρ
(2)(0))2,

E
(1)
11 = a21(ρ

(1)(−τ
∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+ρ̄(1)(−τ
∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
)),

E
(2)
11 = b21(ρ

(1)(−τ
∗
1

τ∗2
)ρ̄(2)(−τ

∗
1

τ∗2
)

+ρ̄(1)(−τ
∗
1

τ∗2
)ρ(2)(−τ

∗
1

τ∗2
))

+2b22ρ
(2)(0)ρ̄(2)(0).

Then, we can get the following coefficients:

C1(0) =
i

2τ∗2ω
∗
2

(g11g20 − 2|g11|2 −
|g02|2

3
) +

g21
2
,

µ2 = −Re{C1(0)}
Re{λ′(τ∗2 )}

,

β2 = 2Re{C1(0)},

T2 = −Im{C1(0)}+ µ2Im{λ′(τ∗2 )}
τ∗2ω

∗
2

. (21)

Based on the discussion above, we can obtain the fol-
lowing results.

Theorem 6 For system (2), if µ2 > 0 (µ2 < 0),
the Hopf bifurcation is supercritical (subcritical); if
β2 < 0 (β2 > 0), the bifurcating periodic solutions
are stable (unstable); if T2 > 0 (T2 < 0), the peri-
od of the bifurcating periodic solutions increases (de-
creases).

The results in Theorem 6 give a description of
the Hopf bifurcation and the bifurcating periodic so-
lutions when τ1 > 0, τ2 > 0 and τ1 ∈ (0, τ10). Ac-
cording to the values of µ2, β2 and T2, we can easily
determine direction of the Hopf bifurcation and prop-
erties of the bifurcating periodic solutions.

4 Numerical simulation

In this section, the interesting dynamical behaviors of
system (2) are shown by a numerical example in order
to support our theoretical results. We consider system
(2) with A = 1.5, d = 0.02, β = 0.05, η = 0.5,
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v = 0.1, c = 0.8, b = 1, that is

dS(t)
dt = 1.5− 0.02S(t)− 0.05S(t− τ1)I(t− τ1)

+0.5R(t− τ2),

dI(t)
dt = 0.05S(t− τ1)I(t− τ1)− 0.12I(t)

−0.8I(t)
1+I(t) ,

dR(t)
dt = 0.8I(t)

1+I(t) − 0.02R(t)− 0.5R(t− τ2),

(22)
which satisfies R0 = 4.0761 > 1.

Then, we obtain the unique positive equilibrium
E∗(3.6645, 11.6531, 1.4169) of system (22) by the
software package Matlab. By computing, we obtain
A10 = 0.0227, A11 = 0.3545, A12 = 1.0645. Thus,
the condition (H11) holds when τ1 = τ2 = 0. So,
all the roots of Eq.(6) have negative real parts in the
absence of delay.

When τ1 > 0, τ2 = 0, by some computation-
s, we obtain that Eq.(8) has a unique positive root
ω10 = 0.4301. Then, we have τ10 = 3.6108 and
f ′1(v1∗) = 0.7534 > 0. That is, the conditions
(H21)−(H22) hold and the characteristic equation (7)
has a pair of purely imaginary roots ±iω10. The nu-
merical simulation in Figure 1 shows that the positive
equilibrium E∗(3.6645, 11.6531, 1.4169) is asymp-
totically stable when τ1 = 3.525 which is smaller than
τ10. Figure 2 shows that periodic oscillations occur
when τ1 is larger than τ10, such as τ1 = 3.715. The re-
sults show that if we shorten the latent period, we will
control the disease. Similarly, we have ω20 = 1.0336,
τ20 = 3.1676 for τ1 = 0, τ2 > 0. The corresponding
waveform and the phase plots are shown in Figures
3-4. As can be seen from Figure 3, the positive equi-
librium E∗(3.6645, 11.6531, 1.4169) is asymptotical-
ly stable when τ2 = 3.05 ∈ [0, τ20). However, when
τ2 passes through the critical value τ20, the positive e-
quilibrium E∗(3.6645, 11.6531, 1.4169) loses its sta-
bility and a Hopf bifurcation occurs, i.e., a family of
periodic solutions bifurcate from the positive equilib-
rium E∗(3.6645, 11.6531, 1.4169). This property can
be seen from Figure 4. The results show that if we
shorten the temporary immunity period we will con-
trol the disease.

When τ1 = τ2 = τ > 0, we obtain ω0 = 0.6026,
τ0 = 3.0107 by some complex computations. For
τ = 2.74 < τ0 = 3.0107, the positive equilib-
rium E∗(3.6645, 11.6531, 1.4169) is asymptotically
stable and this property can be illustrated by Figure
5. In this case, we can control the disease. However,
Once τ passes through the critical value τ0, the pos-
itive equilibrium E∗(3.6645, 11.6531, 1.4169) loses
its stability and a Hopf bifurcation occurs, and the
corresponding waveform and phase plots are shown

in Figure 6. As can be seen from Figure 6, when
τ = 3.15 > τ0 = 3.0107 the positive equilib-
rium E∗(3.6645, 11.6531, 1.4169) is unstable and a
Hopf bifurcation occurs, i.e., a family of period-
ic solutions bifurcate from the positive equilibrium
E∗(3.6645, 11.6531, 1.4169) and the disease will be
out of control in this case.

Lastly, we obtain ω∗
2 = 0.9220, τ∗2 = 3.0724

for τ2 > 0 and τ1 = 2.05 ∈ (0, τ10). Let τ2 =
2.97 ∈ (0, τ∗2 ), we can know that the positive equi-
librium E∗(3.6645, 11.6531, 1.4169) is asymptotical-
ly stable as depicted in Figure 7. Namely, we can con-
trol the disease when the value of τ2 is smaller than
the critical value of τ∗2 . When τ2 = 3.146 which
is larger than τ∗2 , periodic oscillations occur and this
property can be illustrated by Figure 8. Also, this phe-
nomenon shows that the disease will be out of control
when the value of τ2 is larger than τ∗2 = 3.0724. In
addition, we have λ′(τ∗2 ) = 0.0088 − 0.0195i and
C1(0) = −0.0634 − 0.0031i by some complex com-
putations. Further, we obtain µ2 = 7.2045 > 0,
β2 = −0.1268 < 0, T2 = 0.0507 > 0. Thus, ac-
cording to Theorem 6, we can conclude that the Hopf
bifurcation of system (22) is supercritical, the bifur-
cating periodic solutions are stable and the period of
the bifurcating periodic solutions increases.

5 Conclusion
In this paper, an SIRS epidemic model with satura-
tion recovery and two delays is proposed based on the
model in [7]. Compared with the model considered in
[7], we incorporate not only the latent period of the
epidemic but also the temporary immunity period of
the recovered individuals into the model considered
in [7]. Namely, the model proposed in this paper is
more general. We mainly consider the effects of the
two delays on the proposed model in the present pa-
per. By analyzing the distribution of the eigenvalues
of the corresponding transcendental characteristic e-
quation of its linearized equation, we find the critical
values for the occurrence of Hopf bifurcation. When
the Hopf bifurcation occurs, the propagation of the
disease is out of control. Therefore, In order to con-
trol and even eliminate the propagation of the disease,
the two delays in the model should remain less than
the corresponding critical value. Furthermore, explic-
it formulae are derived to determine the direction and
the stability of the Hopf bifurcation by using the nor-
mal form theory and center manifold theorem. In or-
der to verify the theoretical analysis, a numerical ex-
ample is also included.
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