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Abstract: This paper discusses the dynamical behaviors of an SIRS epidemic model with saturation recovery
and two delays. The main results are given in terms of local stability and Hopf bifurcation. By choosing the
diverse delay as a bifurcation parameter, we show that the complex Hopf bifurcation phenomenon at the positive
equilibrium of the model can occur as the diverse delay crosses the corresponding critical value. Particularly, the
direction and stability of the local Hopf bifurcation are determined by using the normal form theory and center
manifold theorem. Finally, some numerical simulations supporting our theoretical results are presented.
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1 Introduction Cui investigated the stability and bifurcations of the
endemic equilibria of system (1) in [7].

It has been recognized for a long time that time
delays can have a very complicated impact on the dy-
namics of a dynamical system and dynamics of a dy-
namical system with delay have been investigated by
many authors [9-15]. In [9], Zhuang and Zhu analyzed
the existence of Hopf bifurcation for an improved HIV
model with time delay and cure rate. In [12], Kar and
Ghorai studied the existence and properties of Hopf
bifurcation of delayed predator-prey model with har-
vesting. In [14], Bianca et al. investigated the exis-
tence of the Hopf bifurcation of an economic growth
model with two delays by regarding different combi-
nation of the two delays as a bifurcation parameter.
Further, they obtained the explicit formulas determin-
ing the stability, direction, and period of bifurcating

Infectious diseases have ranked with wars and famine
as major challenges to hunman and society for cen-
turies [1]. Many epidemic dynamical models have
been proposed and used to study the dynamics of epi-
demics in order to understand the pathogenesis of dis-
eases and to control the diseases [2-8]. In [2], Xi-
ao and Ruan studied an epidemic model with non-
monotonic incidence rate and they found that either
the number of infective individuals tends to zero as
time evolves or the disease persists by investigating
the stability of the disease-free equilibrium and the
endemic equilibrium. In [5], Wang et al.proposed a
HIV model in order to understand HIV dynamics and
disease progression. In [7], Wan and Cui proposed the
following SIR model with saturation recovery:

%Et) =A—dS(t) - BS)I(t), periodic solutions by using the normal form theory
ar) cI(t) and center manifold theorem. Motivated by the work
. = BS(t)I(t) — (d+v)I(t) — bHI(t)’ (1) above and considering that the recovered individuals
dR(t) _ cI(D) may be infected again after a temporary immunity pe-
dt — bI(t) dR(t), riod, we propose the following SIRS model with two

where S(t), I(t) and R(t) denote the susceptible delays in this paper:

number, the infected number and the recovered num-

ber of individuals at time ¢, respectively. A is the re- %gt) = A—dS(t)— BS(t —m)I(t—T1)

cruitment rate of the susceptible population. d is the

natural death rate of the population and v is the death +nR(t — 72),

rate due to the disease. [ is the disease transmission daIt) _ _ N

coefficient. c is the maximum of treatment per unit of ai = 05t =m)I(t—m) = (d+v)I{t) @)

time and b measures how soon saturation occurs. 7 is _bili%v

the latent period of the epidemic. All the parameter- iR .

s in system (1) are assumed to be positive. Wan and # = bil(z) —dR(t) — nR(t — 1),
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where 7 is the latent period of the epidemic and 7
is the temporary immunity period after which a re-
covered individual may be infected again. 7 is the
state transition rate between the recovered class and
the susceptible class.

This paper is organized as follows. In Section 2,
existence of Hopf bifurcation of system (2) are ana-
lyzed by using characteristic root method. Direction
and stability of the Hopf bifurcation are determined
in Section 3 by using the normal form theory and the
center manifold theorem. In Section 4, computer sim-
ulations are carried out to illustrate the validity of the
main results. Some main conclusions are drawn in
Section 5.

2 Existence of Hopf bifurcation

It is not difficult to verify that if Ry = ﬁ > 1,

then system (2) admits a unique endemic equilibrium
E.(S«, I, Ry) , where

1 c

Sy = B(d+v+b+l*)’
o —B, + /B2 —4A,C,
o 24, ’
cl,
R, = ——
(d+n)(b+ L)
with
A, = Bld+v)(d+n),
Cy = (d+n)(bd®+bdv — AbB),
B, = (d+n)(cf+b5(d+v)

+d(d+v) — AB) — ¢fn,

and Ry is the basic reproduction number.
It is easy to get the liberalization of system (2) at
the positive equilibrium of system

W — 01S(t) + asS(t — 1) + agl (t — 1)

+a9R(t - 7'2),
O — 401 (t) + arS(t — ) + agl (t — 1),

%}Et) = agI(t) + CL4R(t) + aloR(t — 7'2),

(3)
where
be
ay = —d,azz_(d'i_’l))—m?
*
be

= —  _ as=—d
a‘3 (b + I*)2 ) a‘4 9
as = _BI*7Q6:_BS*7G7:BI*7
ag = [Sk,a9 =mn,a10 = —1.
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)\3 =+ A2>\2 =+ Al)\ =+ Ao

+ (BA? + BiA 4 By)e M

+ (C2>\2 + Cl>\ + C(])E_M—2

+ (D1 + Dg)e ANmitm2)

+ (Bi\+ Eg)e ™

+ FpeAmtm) =, 0))
where
Ay = —ajasay, A1 = aras + aja4 + asay,
Ay = —(a1 +as + a4), By = —(a1a8 + a2a5)a4,
By = ajag+ agas + (as + ag)ay,
By = —(as+ ag),Co = —aiazao,
C1 = (a1 +a2)ag, Ca = —ao,
Dy = —(aszarag + aragaig + azasaio),
Dy = (a5 + ag)ai, Eo = (asar — asag)ay,
E1 = asag — agar, Fy = (agar — asag)aio.

From the expressions of as, ag, a7 and ag, we
know that asags = agar. Thus, Eq.(4) becomes the
following form

A AN 4+ AN+ A
+ (BA? + BiA 4 By)e M
+  (CoX2 + O+ Cple 7
+ (D1 + Dg)e Mmitm2), 5)

Casel. 4 =7 =0.

When 71 = 5 = 0, Eq.(5) becomes

N4 A + A+ Ajg =0, (6)
where

Am A0+BO+CO+D07

A = A1+ B+ Ci+ Dy,

Aig = Ao+ By + (O,

If the condition (HH) Ag > 0, A1pA11 > Aqg
holds, all the roots of Eq.(6) must have negative real
parts. Therefore, the positive equilibrium E, is lo-
cally asymptotically stable when 7 = 7 = 0 if the
condition (H11) holds.

Case2. 71 > 0, = 0.

For 71 > 0,7 = 0, Eq.(4) can be rewritten as
following

N A+ A\ + Ay
+  (BoaA? + By A + Byg)e ™ =0, (7)
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where
Ao Ay + Co, A1 = A1 + (1,
Ago Az + C2, Bag = By + Dy,
Bay B1 + D1, Byy = Bo.

Let A = iw; (w1 > 0) be the root of Eq.(7). Then
we obtain

Mgl(wl) sin mwi + Mgg(wl) COSTIW1 = Mgg(wl),
Mgl(wl) COST1W1 — Mgg(wl) sin T1W1 = M24(W1),

where
M1 (wr) Boiwi,
Mag(w1) = (Bag — Baaw?),
Maz(wi) = Agwi — Ay,
Moy(wy) = wi’ — Ayjwy.
Then, we can obtain
W8 + magw! + marw? + mag =0, (®)
where
mey = A3y — B3,
mo1 = A3 — B3 — 2A20As + 2BogBao,
mog = A§2 — B§2 — 2A21.

Let w? = vy, then Eq.(8) becomes
vi’ + WQQU% + mojv1 + mgy = 0. 9)
Define
fi1(v1) = v} + mosvi + marvr + mao.

Discussion about the roots of Eq.(9) is similar to that
in [16], so we have the following lemma.

Lemma 1 For the Eq.(9)

(i) If mog < O, then Eq.(9) has at least one posi-
tive root;

(ii) If mag > 0 and Ay = m3y — 3ma; < 0, then
Eq.(9) has no positive roots;

(iii)If mag > 0 and A1 = m3y — 3ma; > 0,
then Eq.(9) has positive roots if and only if vi =
%‘Wﬂ and f1(v}) <O0.

In what follows, we assume that the coefficients
in f1(v1) satisfy the condition

(Hgl) (a): mog < 0 or (b) mog > 0, Al > 0,
vy > 0and fi(v}) <0.

If the condition (H2;) holds, then Eq.(9) has at
least one positive root. Without loss of generality, we
assume that Eq.(9) has three positive roots which are
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denoted as v11, v12 and v13, respectively. Then, Eq.(8)
has tree positive roots /w1, £ = 1,2,3. And for
every fixed wyy,

: 1 27
Tl({c) = — arccos 92(wik) + ﬂ,

Wik o1(wik)  wik
where
g21(wir) = (Ba1 — AgaBag)wiy

+(Ag9Bag + A9 Bag — Agy Boy w3y,

— A0 B0,
hot(wik) = (Baawiy, — Bao)? + B3wiy.

k=1,23j=012 -

Define

10
710 = mln{le },WH) = w1k|T1:7’107 k= 17 27 3.

Let A(71) = a(m1) + iw(11) be a root of Eq.(7)
near 71 = Ty0 such that a(79) = 0, w(719) = wio.
Next, we verify the transversality condition. Substi-
tuting \(7p) into the left side of Eq.(7) and taking the
derivative with respect to 71, we get

[d/\] -t B 3A% 4 2499\ + Ay
dr A3+ A2 + Ao\ + Agp)
2B22)\ + Bgl . E

+ .
)\(BQQ)\2 + B21 A\ + Byy) A
Thus, we have

fi(vi)

-~ B3w) + (Baawl) — Bx)?’

dx]7t
Re {}

A1l =m0
where v, = W%o-

Thus, if (H22) f](v1) # 0, then Re[ ] L, #

0. According to the Hopf bifurcation theorem in [17],
we have the following results.

Theorem 2 If the conditions Hy1, (H21) and (Haz)
hold, the positive equilibrium E, of system (2) is
asymptotically stable for 1 € [0, T10). System (2) un-
dergoes a Hopf bifurcation at 71 = T19, which means
that a branch of periodic solutions will bifurcate from
FE. as m1 passes through the critical value 1.

The results in Theorem 2 show that the latent pe-
riod delay plays a complicated role in system (2) and
it is responsible for the stability switch of the system
when 5 = 0.

Case3. 71 =0,7 > 0.
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When 71 = 0, 9 > 0, Eq.(5) can be transformed
into the following form
X A+ Az )+ Asg
+ (B32A? + BsiA + Byg)e ™ =0, (10)

where
Asg Ag + By, A31 = A1 + By,
Azs = Az + Ba, B3y = Cy+ Dy,
Bs C1+ D1, B3z = (.

Let A = dwa(w2 > 0) be the root of Eq.(10).
Then, we get

{ M31 ((.UQ) COS ToWo — M32(W2) sin ToWwWg = M33,

M31 (CUQ) sin Tywg + M32(W2) COS Towg = M34,

where
M3 (ws) B3jwo,
M3a(w2) = Bsg— Bsaw3,
Msz(ws) = wi — Azjws,
M3y(w2) = Asawi — Asp.

Then, we can obtain

wg + m32w§l + mglw% + mgg =0, (11)
with
mgg = A3y — B,
mg1 = A% — B3 — 2A30A32 + 2B30Bag,

Let w% = v9, then Eq.(11) becomes

’US + m32v% + mgiv9 + m3g = 0. (12)

Define
f2(v2) = v3 + ma3av3 + mayv2 + mao.

Similar as in Case 2, we assume that the coef-
ficients in fo(ve) satisfy the condition (Hsy) (a):
mgy < 0 or (b/)Z msg > 0, Ay > 0, U; > 0
and fa(v3) < 0, where Ay = m3, — 3ms; and
’US — *mszgr\/FZ .

If the condition (H3;) holds, then Eq.(12) has
at least one positive root. Similar as in Case 2, we
assume that Eq.(12) has three positive roots which
are denoted as va1, v2g and va3, respectively. Then,
Eq.(11) has tree positive 100ts wo, = /vg, k =
1,2, 3. For every fixed woy,

i 1 31 (W2 257
7-2(%) — — arccos P 2k) (czr) + 2T ;
Wak hai(war) — work
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where
g31(war) = (Bs1 — AzaBsz)wsy, + (Az0Bsa + AszBso
—A31Bay,
hai(wak) = (Bsawdy, — Bso)® + Bjjwiy,
E=1,23/=0,1,2 -
Define

. 0
T20 = mln{Ték)},UJQo = w2k’72:7—20, k= 1, 2, 3.

Let A\(12) = a(m2) + iw(72) be a root of Eq.(10)
near 7o = Tyoq such that 01(7'20) =0, w(’TQo) = wyQ.
Similar as in Case 2, we can conclude that if (H32)
f5(va) # (v« = wip) holds, then Re[ 2] 7L -
0. Thus, we have the following results.

Theorem 3 If the conditions (H11), (Hs1) and (Hsz)
hold, the positive equilibrium E,. of system (2) is
asymptotically stable for To € [0, 7). System (2) un-
dergoes a Hopf bifurcation at 79 = 1o, which means
that a branch of periodic solutions will bifurcate from
FE. as 1 passes through the critical value To.

The results in Theorem 3 show that the time delay
due to the temporary immunity period can also play a
complicated role in system (2) and it is responsible for
the stability switch of the system when 71 = 0.

Cased. M= =7>0.
When 11 = 75 = 7 > 0, Eq.(5) becomes

N ApN A+ Ay
+  (BpA? 4 By + By)e™

+ (Cur+Cy)e P =0, (13)
where
Ay = Ao, An = Ay,
Ay = Ag, By = By + Cy,
By = Bi1+Cy,By = By + (o,
Cn D1, Cy0 = Dy.

Multiplying e*™ on both sides of Eq.(13), we get

Bi)? + By + By
+ (N4 ApAZ 4+ Apd+ Ay)e
+ (O + Cyo)e™™ = 0. (14)

Let A = iw(w > 0) be the root of Eq.(14). Then, we
can obtain

My (w) cos Tw — Mys(w) sin Tw = Mys(w),
Myg(w) sin Tw + Mys(w) cos Tw = Myg(w),
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where

My (w) Ago + Cao — Agaw?,
Mpw) = (Apgw—Chpw — w3),
Myz(w) = DBasw? — B,
My(w) = (Ag — Cao — Appw?),
Mys(w) = (Apw+ Cpw —w?),
Mys(w) —Bajw.

It follows that

psw® + p3w? + prw

sinTw = 5 PR .
COSTW = 6p4W4 + pQW2 + Po 9
Wb + qawt + qaw? + qo
where
po = (Cyo — Ag0)Byo,
p1 = (Ag + Cy1)Bao — (Aso + Cyo) By,
p2 = (A0 — Cuy0)Baz + (Cy1 — A41)Ba
+A42 By,

p3 = AyaBy1 — Bao — (As1 + Cu1) By,
ps = By — ApByo,ps = By,
Q@ = Ajy— Cip g2 =A% — Ch — 2A50As,
= Al —2A4.

By sin? 7w + cos? 7w = 1, we get

12 1
w + Mmysw 0 + m44w8 + Mmysw

+ magw? + myw? Fmye =0, (15)

6

where
My = @ — P
ma = 2qog2 — 2pop2 — pi,
ma2 = @+ 2q0qa — P35 — 2pops — 2p1P3,
mas = 2qo + 2q2q4 — 2p1p5 — 2paps — P,
mas = q; +2q2 — pj — 2psps,
mas = 2qs — 3.

Let w? = v, then Eq.(15) becomes

Ug + m45v§ + m44v§ + 771437)3:?
2
+  my2v3 + myivz + myo = 0. (16)

In order to give the main results in this paper, we
make the following assumption.

(Hy1) Eq.(16) has at least one positive real root.

Suppose that the condition (Hy;) holds. Without
loss of generality, we assume that Eq.(16) has six pos-
itive real roots, which are denoted as v31, v32, - - - , Usg,
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respectively. Then Eq.(15) has six positive real roots
Wk = /U3k, kK =1,2,---,6. For every fixed wg,

y 1 Ppawi + pawi + po 2jm
= — arccos —¢ 7} 5 + -,
Wi wp + quwy, + 2w + qo Wi

(j
Tk

withk=1,2,---,6.5=0,1,2,---.
Define

TO = min{TéU)}’wO — wk|7_:7_0’k = ]_’2’ . 76'

Let A(7) = «(7) + iw(T) be a root of Eq.(14)
near 7 = 79 such that () = 0, w(709) = wp. Substi-
tuting A(7) into the left side of Eq.(14) and taking the
derivative with respect to 7, we get

{dA]-l () T
dT Q41()\) )\’
with

pa1(A) = 2BpA+ By

+(3A2 4+ 240\ + Ay1)eN + Cupe ™V,
aui(\) = (CuA? 4 Cyo\)e ™
— (N A X3+ AP\ Agg)e.

Thus, we have

[d)\] -1 _ PyrQ4r + ParQar

2 2 )
Ll P Qip + Q1;
where
P4R = (A41 + 041 — 3&18) COS ToWw(o
—2A42w0 sin Towg + B41,
PN
Py = (An — Cy — 3wg) sin 1owo
+2A420.)0 COS T0w02 + B42Ld0,
Qur = (A41w§ — 0410,)8 — wé) COS Towo
3 .
—(A42w0 — A40(.U0 — C40w0) S 7oWo,
2 2 4N -
Qur = (Anwji+ Chywg — wy) sin Towo

+(A42w€’ — Aypwo + Caowp) cos Towp.

Obviously, if (H42) PirQur + PirQ4r # 0, then
Re[%]_l # 0. Thus, we have the following results.

T=T0

Theorem 4 [f the conditions (Hi1), (Hy1) and (Hy2)
hold, the positive equilibrium E, of system (2) is
asymptotically stable for T € [0,79). System (2) un-
dergoes a Hopf bifurcation at T = 19, which means
that a branch of periodic solutions will bifurcate from
FE. as T passes through the critical value .
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Theorem 4 shows that the time delay 7 is vital with
to the solutions of system (2) and it can establish the
existence of bifurcating periodic solutions. g51(waix) = Ms1(wais) X Msa(waix)
CaseS5. 71 > 0,79 >0and 1| € (O,Tlo). +M52(w2i*) X M53(w2i*)’
We consider Eq.(5) with 71 in its stable inter- g52(waix) = Mg?l (waix) + Mgz (wW2isx)-
val and 75 is considered as a parameter. Let A =
iwax (w2 > 0) be the root of Eq.(5). Then we have Define
M1 (way) sin Towas + Ms2(wax) COS Towas Ty = min{TZ(?,z},wé‘ = wgi*|72:T2*,z' =1,2,---,k.

= Mas(ws2), Let A\(12) = a(72) + iw(72) be a root of Eq.(5)
M1 (way) cos Towa, — Mz (way) sin Towos near :)\Z'Q* ;uph thﬁt ciz(?")d: O,fo]JE(T%S)): u(){g* igb-
B stituting A\(72) into the left side of Eq.(5) and taking
= Msa(wa), the derivative with respect to 72, we get
where
AT (N
Ms1(was) = Diwoy cOS Tiwoy drs Ty A
— Dy sin Tywoy + Clwas,
Misa(was) = Diwassin Tiwo where
4Dy cos Tywas + Cp — ng%*, psi(\) = 32 4 245\ + A,
Ms3(woy) = Agwg* — Ag — Bjwas sin Tiwi« _(7-132)\2 — (2By — 11 B1)A
_?)(Bo - Bng*) COS T1W2x, +7 By — Bl)e_’\”
M54(W2*) = Woy — Aqway 2_ -B.IWQ* COS T1W2+« +(202)\ + Cl)ef)\fg
—|—(BO — BQ(JJ2*) SIN T1W2x. +(D1 . TlDl)\ N 7’1D0)€_>\(7—1+T2)7
Then, we have s1(N) = (CoX® + C1A2 4 CoN)e ™
W, 914003* + g12w3, + g10 +(D1A\? + DO)\)e*A(TIJFT?).
+  2(gaaws, Theref
+  goow3, + gap) COS Tiwas eretore,
5 _
— 2(gzswa Re {d)\} ' PsrQsr + PsrQsr
+  g23wi, + gorwa) sinTiwa,.  (17) ey — Q.+ Q%
where where
2 2 2 2
g0 = Ap+ By —Ch— Dy, . : .
g2 = A2+ B2 C?-D? Psr = (2Cow; — (D1 — 11.Do) sin myws
—9A0Ay — 2By By + 2C,Cs —71Dqw3 cos Tyws ) sin T4 w5
14 A2 4 B2 - (2 - 24, +(C1 + (D1 — 11 Dy) cos Tiws
g0 = AgBy— CoDy —71Dqw3 sin Tiws ) €os Ty ws,
g1 = AlBO + CODl _ AOBl _ ClDO +A1 - 3(&);)2 + (232 - 7'131)(,01< sin71w§
’ *\ 2 *
goo = A1B1 — ApBy — AsBy — C1 Dy +(HB:("JI) + B — 7150) COilez
+02D0, P5[ = (202(,02 — (D1 — 7'1D()> Sin le2
gos = AgBy — Ay By — CyDy — By, —71Dw3 cos Tyw3 ) oS T ws
924 A2By — B, g25 = Ba. ~(C1+ (D1 = m Do) cos T
N hat (Hsy) Eq.(17) | —71Dqw3 sin Tyws ) sin 75 w3,
ext, we suppose that (Hs1) Eq. as at least « B x
finite positive root. We denote the positive roots of +249w3 +* (22 By —m1.By) cos le? .
Eq.(17) as w14, W22, =+ +» Wok«. FOI €Very wojx, t = —(11Ba(w3)” + B1 — 11 Bo) sin 1yw3,
1,2,--- kK, Qsr = (Cows — Co(wh)® + Dy(w)?sin 1w
G 1 g51(wWais) N 2jm +Dow3 cos Tiws ) sin 75wy
Tow = Wi areees gr2(wai)  woin ~(C1(w3)? + Di(w})? cos Tyw;
E-ISSN: 2224-2880 305 Volume 15, 2016
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— Dows Sin Tyw3 ) COS Ty W,

(Cowy — Co(wh)® + Dy(w})? sin 1w
+Doyw3 cos Tiws) COS Ty ws
—(C1(w3)? + Dy (wh)? cos Tws
—Dows sin Tyws ) sin 75 w5 .

Qs1

Thus, if (Hs2) PsrQsr+Ps1Qsr # 0holds, then
Re[<2 dA # 0. Therefore, we have the following

dro ]TQ 'r
results.

Theorem 5 [f the conditions (Hy1), (Hs1) and (Hsz)
hold and 11 € (0, T10), the positive equilibrium E, of
system (2) is asymptotically stable for o € [0,75).
System (2) undergoes a Hopf bifurcation at o = T3,
which means that a branch of periodic solutions will
bifurcate from E, as 1o passes through the critical
value T5.

The results in Theorem 5 can establish the ex-
istence of bifurcating periodic solutions when 71 >
0,72 > 0and 71 € (0,710). Next, we determine the
direction of the Hopf bifurcation and stability of peri-
odic solutions in this case by following the algorithm
n[17].

3 Direction and stability of the Hopf
bifurcation

In this section, we investigate the direction of Hopf bi-
furcation and the stability of bifurcating periodic solu-
tions of system (2) with respect to 7 for 71 € (0, 719)
by using the normal form method and center manifold
theorem introduced by Hassard et al [17]. It is consid-
ered that system (2) undergoes a Hopf bifurcation at
o = 75, 11 € (0,710). Without loss of generality, we
assume that 75 > 71, where 71 € (0, 719).

Let m = 75 4+ pu,u € R, then p 0 is
the Hopf bifurcation value of system (2). Rescaling
the time delay ¢ — (¢/72), then system (2) can be
transformed into a functional differential equation in
C = C([~1,0], R?) as:

alt)

= Lyus + F(p, ug) (18)

where u(t) (ur(t),ua(t),us(¥))f’ € C =
C([-1,0,R*)and L, : C - R}, F: Rx C — R?
are given, respectively, by

Ly = (73 + 1) (M1(0) + Mas(— ;I>+M3¢< 1),

F(,Ua ¢) = (7—2* +/UJ)(F17F27F3)T7
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where ¢(0) = (¢1(6), ¢2(0), 93(0))" € C,
al 0 0
M1 = 0 a9 0 y
0 a3 ay4
as Qg 0
M2 = a7 as 0 ,
0 0 O
0 0 ag
M3 = 0 O 0 ,
0 0 aio
Fi = an¢i(— %)cbz( %)
T2 T
F, = buoi(— %)¢2( R ()
T2 T2
+ba3d5(0) +
F3 = c165(0) + 22¢2() e
with
a1 = —f,ba1 =B,
by - o be o ke
22 (b—i—I*)S, 23 — (b+[*)47
oy o b b

By the Riesz representation theorem, there exists
a 3 x 3 matrix function 7(0, 1), 0 € [—1,0] whose
components are of bounded variation, such that

Luo= [ dn0,1)0(0).6 € O(-1,0, ).

In fact, we choose

(19 + pu)(My + My + Ms),0 =0,

(73 + 1) (M + My), 0 € [~ 7, 0),
(0, 1) = i

(7_; +M)M3a0 € (_17_ *)7

0,0 =—1

For ¢ € C([—1,0], R?), we define

dé(6)

a0 1< 0 <0,
Alpo =14 |
ffl dn(eaﬂ)¢(9)a 0 = 07
and
R )<Z>—{ 0, -1<6<0,
ILL F(M? ¢>7 0 :0‘
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Then system (18) can be transformed into the follow-
ing operator equation

u(t) = A(p)ue + R(p)ue. (19)
The adjoint operator A* of A is defined by
_dfl(S)
A%(p) = .
Sy dn"(s.0)p(=s), s =0,

associated with a bilinear form

0<s<1,

(p(s), 9(0)) = ©(0)9(0)
- / P& — 0)dn(6)o(€)de,
(20)
where n(0) = n(6,0).
0 15
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Figure 1: E, is locally asymptotically stable for 7, =
3.525 < 19 = 3.6108.
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Figure 2: E, is unstable for 7; = 3.715 > 19 =
3.6108.

From the analysis above, we can conclude
that +titsw; are eigenvalues of A(0) and A*(0).
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Figure 3: FE, is locally asymptotically stable for 7o =
3.05 < 199 = 3.1676.
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Figure 4: FE, is unstable for 9 = 3.225 > 799 =
3.1676.

Figure 5: F, is locally asymptotically stable for 7 =
2.74 < 19 = 3.0107.
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Figure 6: E, is unstable for 7 = 3.15 > 75 = 3.0107.
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Figure 7: E, is locally asymptotically stable for 7 =
297 < 75 =3.0724 and 7| = 2.05.
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Figure 8: E, is unstable for m, = 3.146 > 75 =
3.0724 and 7, = 2.05.
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Let p(8) = (1,p2,p3)Te™2“2¢ be the eigenvec-
tor of A(0) corresponding to +itgws; and p*(s) =
V (1, p3, p5)Tei™292% be the eigenvector of A* corre-
sponding to —i75w35. By some complex computation-
S, we can obtain

a7
P2 = — v
iws — az — age” w271
—twi T —dwr Tk
aj +ase 22 +agpae 271
3 = ; .
P w3 — age_W;Tz* ’
. sk ok
N iws + ay + ase’2"
P2 = = a7€iw§7'1* ’
WATS
% age 2°2

p3 = -~ R ke
w3 + aq + aype'“2"2

From Eq.(20), we obtain

Vo= [L+ paps + p3ps
+717 (a5 + agp2 + p5(a7 + agp2))e
+7'2*p3(a9 + aloﬁ;))e*”;w;]fl

sk ok
720.}271

such that (p*, p) =1, (p*, p) = 0.

Following the algorithm given in [17] and using
the similar computation process in [18], we can get
the coefficients used to determine the qualities of the
Hopf bifurcation:

920 = 275‘7[@21,0(1)( )(2)( )
72 72

2500 (- T (- T

1
3 5
12022 (0P (0))2) + 22155 (0 (0))?],

g = TSV[agl(p(l)(—%)p@)(—%)
Ty T3
)Ty (@ T
+p( 72*)[) ( 72*))
)T\~ _ T
+p5(ba1 (0 ( Ték) ( Ték)
(T Thy)
T T
+2b92 ()(0)5(2)(0))
+202103P(2)(0) (2)(0)]=
g2 = 275 V]azpM(—=2)pP (- *1)
T T

1
3 2*
P (=0

+5(barp) (= L) p (=2

T

T3 T3
—|—2b22( ( )) ) 26219 ( 2( )) ]

(— ) (- )

g1 = 215 Vi]an (W 1(
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o

~—
S
—
N
—
—
(=}
~—

e (2W (0
W2 (0)52)(0)) + 3b23(p@(0))252(0))
+05(ca1 (2WS5) (0)p(0)
+Wid (0)5(

with

Wao(6) = 9220(* ) imseso
Ta Wy
+E20€2i7§w;0,
_1911P(0) irzugo n 19119(0) _irzuso
Ty W5 Ty W5
+E117

19020(0) —irzuzo
%, %
3T5W;

Wi1(0) =

where F5g and E'1; can be computed by the following
equations, respectively

ap;  ap  ajy Eé(l))
dy a0 | Ex=2| EQ
0 —az ajs 0
oy ag  ag Eﬁ)
ay 0/22 0 E11 = — Eﬁ)
0 as Qg 0
with
ay, = 2iwi —ay —aze 2Tz,
dy = —age i,
0,13 — _a9€—2i7'2*w§ ’
a,21 = 7@76—2727'1"0);’
dhy = 20wl —ag — age HTIW2,
dyy = 2iwy — aq — ajpe” 1Yz,
ap = a1+ as,
aby = as+ as,
ozé?) a4 + aig,
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and with
) _ W(_TLy @11
E20 az1p ( 7-2*)p ( 7'2*)’
7_* 7_*
B = bapW (=) (-1
2 T
+2b22 (¥ (0))?,
T T
By = an(pW(-2)p (-2
) )
Sy Ty @ T
2) () _Tiy2)_ T
E® —
11 21(P ( 7_2*) ( 7_2*)
Sy Ty @) T
(0 (=)
+2b22p'? (0)52(0).

Then, we can get the following coefficients:

) 2
C0) = gopelomm — 2~ 20+ 2
_ _Re{Gi(0)}
H2 = T Re(N(m)}
B2 = 2Re{Cy(0)},
/ *
r, — IAGOF+ weIm{X@) )
To W

Based on the discussion above, we can obtain the fol-
lowing results.

Theorem 6 For system (2), if po > 0 (u2 < 0),
the Hopf bifurcation is supercritical (subcritical); if
B2 < 0 (B2 > 0), the bifurcating periodic solutions
are stable (unstable); if To > 0 (Ty < 0), the peri-
od of the bifurcating periodic solutions increases (de-
creases).

The results in Theorem 6 give a description of
the Hopf bifurcation and the bifurcating periodic so-
lutions when 71 > 0,75 > 0 and 71 € (0,719). Ac-
cording to the values of po, B2 and 75, we can easily
determine direction of the Hopf bifurcation and prop-
erties of the bifurcating periodic solutions.

4 Numerical simulation
In this section, the interesting dynamical behaviors of
system (2) are shown by a numerical example in order

to support our theoretical results. We consider system
(2) with A = 1.5, d = 0.02, 5 = 0.05, n = 0.5,
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v=0.1,¢=0.8,b =1, that is

450 — 1.5 - 0.025(t) — 0.055(t — 71)I(t — 71)
+05R(t - Tg),
AW — 0,055t — 1) I(t —71) — 0.121(t)
_0.8I(t)
1+1(2)°
A = S5 — 0.02R(t) — 0.5R(t — 7),

(22)
which satisfies Ry = 4.0761 > 1.

Then, we obtain the unique positive equilibrium
E.(3.6645,11.6531,1.4169) of system (22) by the
software package Matlab. By computing, we obtain
Ao = 0.0227, A1 = 0.3545, Ajo = 1.0645. Thus,
the condition (H11) holds when 71 = 75 = 0. So,
all the roots of Eq.(6) have negative real parts in the
absence of delay.

When 71 > 0,7 = 0, by some computation-
s, we obtain that Eq.(8) has a unique positive root
wig = 0.4301. Then, we have 70 = 3.6108 and
fi(vis) = 0.7534 > 0. That is, the conditions
(H21)— (H22) hold and the characteristic equation (7)
has a pair of purely imaginary roots +%w1p. The nu-
merical simulation in Figure 1 shows that the positive
equilibrium F,(3.6645,11.6531,1.4169) is asymp-
totically stable when 71 = 3.525 which is smaller than
T10. Figure 2 shows that periodic oscillations occur
when 77 is larger than 719, such as 7, = 3.715. The re-
sults show that if we shorten the latent period, we will
control the disease. Similarly, we have wog = 1.0336,
To0 = 3.1676 for 7, = 0, 79 > 0. The corresponding
waveform and the phase plots are shown in Figures
3-4. As can be seen from Figure 3, the positive equi-
librium £, (3.6645,11.6531,1.4169) is asymptotical-
ly stable when 72 = 3.05 € [0, T90). However, when
T9 passes through the critical value 199, the positive e-
quilibrium F,(3.6645,11.6531,1.4169) loses its sta-
bility and a Hopf bifurcation occurs, i.e., a family of
periodic solutions bifurcate from the positive equilib-
rium F,(3.6645, 11.6531, 1.4169). This property can
be seen from Figure 4. The results show that if we
shorten the temporary immunity period we will con-
trol the disease.

When 1 = » = 7 > 0, we obtain wg = 0.6026,
70 = 3.0107 by some complex computations. For
T = 2.74 < 19 = 3.0107, the positive equilib-
rium F,(3.6645,11.6531,1.4169) is asymptotically
stable and this property can be illustrated by Figure
5. In this case, we can control the disease. However,
Once 7 passes through the critical value 7, the pos-
itive equilibrium E,(3.6645,11.6531,1.4169) loses
its stability and a Hopf bifurcation occurs, and the
corresponding waveform and phase plots are shown
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in Figure 6. As can be seen from Figure 6, when
7 = 3.15 > 19 = 3.0107 the positive equilib-
rium FE,(3.6645,11.6531,1.4169) is unstable and a
Hopf bifurcation occurs, i.e., a family of period-
ic solutions bifurcate from the positive equilibrium
E,(3.6645,11.6531,1.4169) and the disease will be
out of control in this case.

Lastly, we obtain wj = 0.9220, 75 = 3.0724
for o > 0 and 71 = 2.05 € (0,70). Let o =
2.97 € (0,75), we can know that the positive equi-
librium £, (3.6645,11.6531,1.4169) is asymptotical-
ly stable as depicted in Figure 7. Namely, we can con-
trol the disease when the value of 7 is smaller than
the critical value of 75. When 7 = 3.146 which
is larger than 73, periodic oscillations occur and this
property can be illustrated by Figure 8. Also, this phe-
nomenon shows that the disease will be out of control
when the value of 7 is larger than 75 = 3.0724. In
addition, we have \'(75) = 0.0088 — 0.0195¢ and
C1(0) = —0.0634 — 0.00317 by some complex com-
putations. Further, we obtain ps = 7.2045 > 0,
Ba = —0.1268 < 0, To = 0.0507 > 0. Thus, ac-
cording to Theorem 6, we can conclude that the Hopf
bifurcation of system (22) is supercritical, the bifur-
cating periodic solutions are stable and the period of
the bifurcating periodic solutions increases.

5 Conclusion

In this paper, an SIRS epidemic model with satura-
tion recovery and two delays is proposed based on the
model in [7]. Compared with the model considered in
[7], we incorporate not only the latent period of the
epidemic but also the temporary immunity period of
the recovered individuals into the model considered
in [7]. Namely, the model proposed in this paper is
more general. We mainly consider the effects of the
two delays on the proposed model in the present pa-
per. By analyzing the distribution of the eigenvalues
of the corresponding transcendental characteristic e-
quation of its linearized equation, we find the critical
values for the occurrence of Hopf bifurcation. When
the Hopf bifurcation occurs, the propagation of the
disease is out of control. Therefore, In order to con-
trol and even eliminate the propagation of the disease,
the two delays in the model should remain less than
the corresponding critical value. Furthermore, explic-
it formulae are derived to determine the direction and
the stability of the Hopf bifurcation by using the nor-
mal form theory and center manifold theorem. In or-
der to verify the theoretical analysis, a numerical ex-
ample is also included.
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